

TU

Colorimetry (CM)

erner Purgathofe

- CM is the branch of color science concerned with numerically specifying the color of a physically defined visual stimulus in such manner that
 - stimuli with the same specification look alike under the same viewing conditions
 - stimuli that look alike have the same specification
 - the numbers used are continuous functions of the physical parameters

Colorimetry Properties

- Colorimetry only considers the visual discriminability of physical beams of radiation
- for the purposes of CM "colors" are an equivalence class of mutually *indiscriminable* beams
- colors in this sense cannot be said to be "red", "green" or any other "color name"
- discriminability is decided before the brain comes into action - CM is not psychology

TU

Color Spaces (C	S)	
 Color Metric S used to meas differences - r 	ure absolute v	alues and
Color Models (RGB, CMY, C	CMYK)
used in conju	nction with dev	/ice
Color Ordering	Spaces (HS	V, HLS)
 used to find c 	olors accordin	g to some criterion
the distinction b obscured by the RGB in compute Werner Purgatholer	prevalence of	

Color Spaces (CS)		
 Color Metric Spaces (CIE XYZ, L*a*b) • used to measure absolute values and differences - roots in colorimetry 		
 Device Color Spaces (RGB, CMY, CMYK) • used in conjunction with device 		
 Color Ordering Spaces (HSV, HLS) used to find colors according to some criterion 		
the distinction between them is somewhat obscured by the prevalence of multi-purpose RGB in computer graphics		
Werner Purgathofer 35		

TU

Colour Ordering Systems (COS)

primary aim: enable the user to intuitively choose colour values according to certain criteria

TU

- choice can yield single or multiple colour values
- examples: HSV, HLS, Munsell, NCS, RAL Design, Coloroid
- used in bottom-up parts of a design process
- sometimes physical samples are provided

erner Purgathofer

