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Color and Color Models 

λ
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Color Models

Problem Specification
Light and Perception
Colorimetry
Device Color Systems
Color Ordering Systems
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Color - Why Do We Care?

Computer Graphics is all about the generation 
and the manipulation of color images
proper understanding and handling of color is 
necessary at every step
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What is Light?

“light” = narrow frequency band of 
electromagnetic spectrum
red border: 380 GHz ≈ 780 nm
violet border: 780 GHz ≈ 380 nm
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light is electromagnetic energy
monochrome light can be described either by 
frequency f or wavelength λ
c = λ f       (c = speed of light)

shorter wavelength
equals higher
frequency

red ≈ 700 nm
violet ≈ 400 nm

Light - An Electromagnetic Wave
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normally, a ray of light contains many different 
waves with individual frequencies 
the associated distribution of wavelength
intensities per
wavelength is
referred to as
the spectrum
of a given ray
or light source

Light – Spectrum
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dominant wavelength | frequency (hue, color)
brightness (area under the curve)
purity
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The Human Eye

retina contains
rods: b/w
cones: color

rods  

cones
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The Human Eye

3 types of cones

different
wavelength
sensitivities:

red
green
blue

fraction of 
absorbed light
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Color Blindness

red/green blindness
red & green cones too similar

blue blindness
no blue cones

other
cones missing
cones too similar

fraction of 
absorbed light
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16%
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Color Blindness Tests

5 = normal
nothing = red/green blind

2 = red/green blind
nothing = normal
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Color Blindness Tests

8 = normal
3 = red/green weak
nothing = r/g blind

8 = red/green blind
12 = blue/yellow blind
182 = normal
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normal vision           red/green weaknessred/green blindness 

Color Blindness Example
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Color Spaces (CS)

Color Metric Spaces (CIE XYZ, L*a*b*)
used to measure absolute values and 
differences - roots in colorimetry

Device Color Spaces (RGB, CMY, CMYK)
used in conjunction with device

Color Ordering Spaces (HSV, HLS)
used to find colors according to some criterion

the distinction between them is somewhat 
obscured by the prevalence of multi-purpose 
RGB in computer graphics
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What is our Goal?

to be able to quantify color in a meaningful, 
expressive, consistent and reproducible way.

problem: color is a perceived quantity, 
not a direct, physical observable
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object light
stimulus eye brainnerve

signal

Color - A Visual Sensation

electromagnetic
rays

color 
sensation

realm of direct 
observables realm of psychology
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Colorimetry (CM)

CM is the branch of color science concerned 
with numerically specifying the color of a 
physically defined visual stimulus in such 
manner that

stimuli with the same specification look alike 
under the same viewing conditions
stimuli that look alike have the same 
specification
the numbers used are continuous functions of 
the physical parameters 
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Colorimetry Properties

Colorimetry only considers the visual 
discriminability of physical beams of radiation
for the purposes of CM „colors“ are an 
equivalence class of mutually indiscriminable
beams
colors in this sense cannot be said to be “red”, 
“green” or any other “color name”
discriminability is decided before the brain 
comes into action - CM is not psychology
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observers had to match a test light by combining 
three fixed primaries

goal: find the 
unique RGB 
coordinates 
for each 
stimulus

Color Matching Experiments (CME)

viewing
screen

test
source

masking
screen

viewer 
controls 

independently
variable 
primary 
sources
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Tristimulus Values

the values RQ, GQ and BQ for a stimulus Q that 
fulfill

are called the tristimulus values of Q

R = 700.0 nm
G = 546.1 nm
B = 435.8 nm

Q = RQ ⋅ R + GQ ⋅G + BQ ⋅ B
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“Negative” Light in a CME

if a match using only positive RGB values 
proved impossible, observers could simulate a 
subtraction of red from the match side 
by adding it to the test side
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CIE RGB Color Matching Functions

?
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CIE XYZ

problem solution: XYZ color system
tristimulus system derived from RGB
based on 3 imaginary primaries
all 3 primaries are outside 
the human visual gamut
only positive XYZ 
values can occur!
1931 by CIE (Commission
Internationale de l’Eclairage) X

Y

Z
Werner Purgathofer 23

projective transformation specifically designed 
so that Y = V
(luminous efficiency function)

XYZ CIE RGB uses inverse matrix
XYZ any RGB matrix is device dependent

X = 0.723R + 0.273G + 0.166B
Y = 0.265R + 0.717G + 0.008B
Z = 0.000R + 0.008G + 0.824B

Transformation CIE RGB XYZ
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RGB vs. XYZ

negative component disappears
Y is achromatic

amounts of RGB primaries 
needed to display spectral colors

amounts of CIE primaries needed 
to display spectral colors
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XYZ color model    C(λ) = XX + YY + ZZ
(X, Y, Z are primaries)
normalized chromaticity values x, y

( z = 1 – x – y )

complete description
of color: x, y, Y

CIE Color Model Formulas

ZYX
Xx ++

=
ZYX

Yy ++
=

1

1
1 X

Y

Z
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CIE Chromaticity Diagram

comparing color 
gamuts
identifying 
complementary 
colors
determining 
dominant 
wavelength, purity

spectral color positions 
are along the boundary 
curve

spectral colors

purple line
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Properties of CIE Diagram (1)

color gamuts defined 
for a two-color and a 
three-color system of 
primariesC1

C2
C3

C5

C4
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Properties of CIE Diagram (2)

representing 
complementary 
colors on the 
chromaticity diagramC1

C2

C
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Properties of CIE Diagram (3)

determining 
dominant wavelength 
and purity with the 
chromaticity diagram

C1 → Cs

C2 → Cp?
→ complement Csp

C1

C2

C

Csp

Cp

Cs
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Color Spaces (CS)

Color Metric Spaces (CIE XYZ, L*a*b*)
used to measure absolute values and 
differences - roots in colorimetry

Color Models (RGB, CMY, CMYK)
used in conjunction with device

Color Ordering Spaces (HSV, HLS)
used to find colors according to some criterion

the distinction between them is somewhat 
obscured by the prevalence of multi-purpose 
RGB in computer graphics
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White
(1,1,1)

Yellow
(1,1,0)

RGB Color Model

tristimulus theory, 
peak sensitivity

630nm (red)
530nm (green)
450nm (blue)

additive color 
model (monitors)

C(C(λλ) = R) = RRR + G+ GGG + B+ BBB

Red
(1,0,0)

Green
(0,1,0)

Cyan
(0,1,1)

Magenta
(1,0,1)

Blue
(0,0,1)

Black
(0,0,0)

Greyaxis
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RGB Color Model Images

3 views of 
the RGB 

color cube
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RGB Color Model Gamut

RGB color gamut

RGB (X,Y) CHROMATICITY COORDINATES
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CMY Color Model

primary colors 
cyan, magenta, 
yellow
subtractive color 
model (hardcopy
devices)

C=G+B, using C 
“subtracts” R
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Color Spaces (CS)

Color Metric Spaces (CIE XYZ, L*a*b)
used to measure absolute values and 
differences - roots in colorimetry

Device Color Spaces (RGB, CMY, CMYK)
used in conjunction with device

Color Ordering Spaces (HSV, HLS)
used to find colors according to some criterion

the distinction between them is somewhat 
obscured by the prevalence of multi-purpose 
RGB in computer graphics
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Colour Ordering Systems (COS)

primary aim: enable the
user to intuitively choose 
colour values according to 
certain criteria
choice can yield single 
or multiple colour values
examples: HSV, HLS,
Munsell, NCS, RAL Design, Coloroid
used in bottom-up parts of a design process
sometimes physical samples are provided
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HSV Color Model

more intuitive color specification
derived from the RGB color model:

when the RGB color cube is viewed along the 
diagonal from white to black, the color cube 
outline is a hexagon

RGB Color Cube Color Hexagon

Werner Purgathofer 38

HSV Color Model Hexcone

color components: 
hue (H)
∈ [0°, 360°]
saturation (S)
∈ [0, 1]
value (V)
∈ [0, 1]

HSV hexcone
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HSV Color Model Hexcone

color components: 
hue (H)
∈ [0°, 360°]
saturation (S)
∈ [0, 1]
value (V)
∈ [0, 1]

HSV hexcone
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HSV Color Definition

color definition
select hue, S=1, V=1
add black pigments,
i.e., decrease V 
add white pigments,
i.e., decrease S

Shades

S

cross section of the HSV 
hexcone showing regions 
for shades, tints, and tones
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HLS Color Model

HLS double cone

color components: 
hue (H) 
∈ [0°, 360°]
lightness (L) 
∈ [0, 1]
saturation (S) 
∈ [0, 1]
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Color Model Summary

Colorimetry:
CIE XYZ: contains all visible colours

Device Color Systems:
RGB: additive device color space (monitors)
CMY(K): subtractive device color space 
(printers)
YIQ: television (NTSC)
(Y=luminance, I=R-Y, Q=B-Y)

Color Ordering Systems:
HSV, HLS: for user interfaces


