Color and Color Models

- Computer Graphics is all about the generation and the manipulation of color images
- proper understanding and handling of color is necessary at every step

Light - An Electromagnetic Wave

- light is electromagnetic energy
- monochrome light can be described either by frequency for wavelength λ

Color Models

 70- Problem Specification
- Light and Perception
- Colorimetry
- Device Color Systems
- Color Ordering Systems

Werner Purgathofer

Light - Spectrum

- normally, a ray of light contains many different waves with individual frequencies
- the associated distribution of wavelength intensities per wavelength is referred to as the spectrum of a given ray or light source


```
red/green blindness
```


What is our Goal?

to be able to quantify color in a meaningful, expressive, consistent and reproducible way.

- problem: color is a perceived quantity, not a direct, physical observable

Colorimetry (CM)

- CM is the branch of color science concerned with numerically specifying the color of a physically defined visual stimulus in such manner that
- stimuli with the same specification look alike under the same viewing conditions
- stimuli that look alike have the same specification
- the numbers used are continuous functions of the physical parameters

Color Spaces (CS

Color Metric Spaces (CIE XYZ, L*a*b*)

- used to measure absolute values and differences - roots in colorimetry
- Device Color Spaces (RGB, CMY, CMYK)
- used in conjunction with device
- Color Ordering Spaces (HSV, HLS)
- used to find colors according to some criterion
- the distinction between them is somewhat obscured by the prevalence of multi-purpose RGB in computer graphics
\qquad ${ }_{13}$

\qquad

Colorimetry Properties

Colorimetry only considers the visual discriminability of physical beams of radiation

- for the purposes of CM „colors" are an equivalence class of mutually indiscriminable beams
- colors in this sense cannot be said to be "red", "green" or any other "color name"
- discriminability is decided before the brain comes into action - CM is not psychology

"Negative" Light in a CME

- if a match using only positive RGB values proved impossible, observers could simulate a subtraction of red from the match side by adding it to the test side

CIE RGB Color Matching Functions

Werner Purgathofer

CIE XYZ

- problem solution: XYZ color system
- tristimulus system derived from RGB
- based on 3 imaginary primaries
- all 3 primaries are outside the human visual gamut
- only positive XYZ values can occur!
- 1931 by CIE (Commission Internationale de l'Eclairage)

Transformation CIE RGB \rightarrow XYZ

- projective transformation specifically designed so that $\mathrm{Y}=\mathrm{V}$
(luminous efficiency function)

$$
\begin{aligned}
& X=0.723 R+0.273 G+0.166 B \\
& Y=0.265 R+0.717 G+0.008 B \\
& Z=0.000 R+0.008 G+0.824 B
\end{aligned}
$$

- $\mathrm{XYZ} \rightarrow$ CIE RGB uses inverse matrix
$■ X Y Z \rightarrow$ any RGB matrix is device dependent

CIE Chromaticity Diagram

- comparing color gamuts
- identifying complementary colors
determining dominant wavelength, purity
spectral color positions are along the boundary curve

Properties of CIE Diagram (1)

color gamuts defined for a two-color and a three-color system of primaries

Color Spaces (CS)

$T \mathrm{~T}$

- Color Metric Spaces (CIE XYZ, L*a*b*)
- used to measure absolute values and differences - roots in colorimetry
- Color Models (RGB, CMY, CMYK)
- used in conjunction with device
- Color Ordering Spaces (HSV, HLS)
- used to find colors according to some criterion
- the distinction between them is somewhat obscured by the prevalence of multi-purpose RGB in computer graphics

Color Spaces (CS)

- Color Metric Spaces (CIE XYZ, L*a*b)
- used to measure absolute values and differences - roots in colorimetry
- Device Color Spaces (RGB, CMY, CMYK) - used in conjunction with device
- Color Ordering Spaces (HSV, HLS) - used to find colors according to some criterion
- the distinction between them is somewhat obscured by the prevalence of multi-purpose RGB in computer graphics

